Privacy in Data Collection, Management, and Use

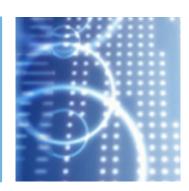
Karen Sollins

CFP Meeting, October 27, 2015

The Dilemma

- ► The value of data
 - All about positives
 - Aggregation and fusion
 - Data Lakes
- ► The personal cost: privacy
 - What are the risks/costs
 - ► To whom
 - Who has rights
 - Who has responsibilities
 - What is feasible: now and in the future

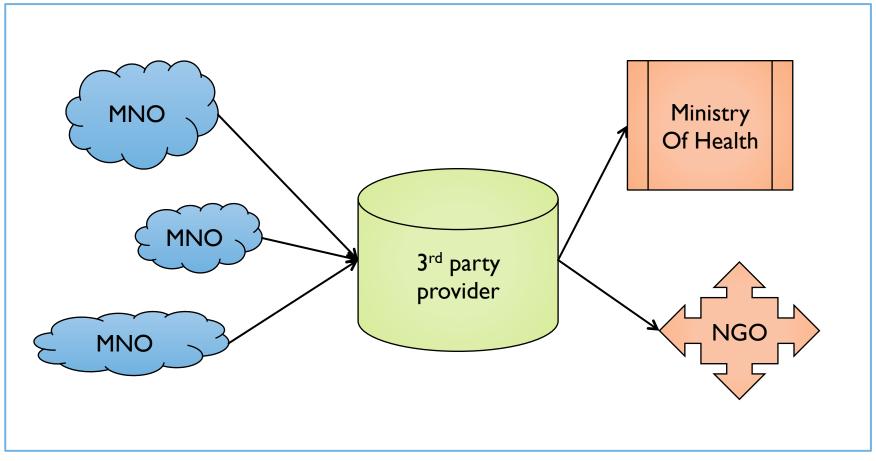
Privacy at CSAIL


- CFP: Privacy and Security WG
- BigData Privacy Working Group
- The same set of issues
 - Large amounts of data
 - About human subjects and the results of their activities in cyberspace
 - All the same questions about the tradeoffs in
 - Beneficial and useful opportunities to use the data (and all the tools to do that)
 - Individual's right to privacy (and tools to do that)

- ► MOOCs and other online educational systems
- Use of social media information for research
- Sensor and mobile device tracking data for public and individual health
- Privacy on aggregated datasets
- Privacy and user consent: challenges and privacy concerns
- Consumer privacy and marketing
- Genomics and Health

One example: sensor and mobile data for public and individual health

- The challenge
 - NGOs and Ministries of Health (governmental): concerns about health and mitigation of infectious diseases
 - Data: Population (or individual) mobility and infectious diseases
 - Two alternative objectives
 - Scenario I: Understand and quantify spread of specific diseases
 - Scenario 2: Micro-target individuals for individualized responses
- ► The data: mobile phone metadata
 - Locations
 - Distances traveled
 - Duration and frequency of travel
 - Recharging patterns (e.g. reflects socio-economic status)
 - Texting patterns (frequency and timeliness of responses, etc.)

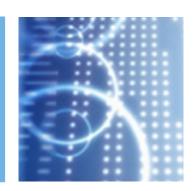

Privacy considerations in systems design: Scenario 1

- Participants (besides subjects)
 - MNO (Mobile Network Operator): a number of these
 - > 3rd party data provider
 - Ministry of Health or other "customer"
- System modularity options
 - Design I
 - Each MNO anonymizes and coarsens data
 - Data provider aggregates all records
 - ▶ All the problems of conformance of data from different sources
 - Ability to reverse anonymization techniques
 - Design 2
 - Each MNO provides only aggregate or summary data: must provide conformance for data provider
 - Data provider aggregates the summaries

System design

- Regulatory environment
 - Two (French civil code tradition carried into EU and English common law) qualitatively different regulatory regimes
 - Human mobility not reflective of those boundaries
- Data utility: tradeoff of work and privacy against flexibility, extensibility and utility of data
- MNOs: Not in the business of social or health data analysis, or providing data to NGOs and ministries of health (e.g. storage, curation of data, etc.)

- Scale: amount of data growing exponentially
- Diversity of stakeholders with new interests and objectives
- Integration across previously unmerged datasets
- Secondary subjects: others not normally included in "privacy policies" increasing affected and targeted
- Emergent information will require emergent privacy policies


- Data subject(s): primary and secondary
- Decision makers
- Data collectors
- Data curators
- Data analysts
- Data platform providers (maybe "stewards")
- Policy enforcers
- Auditors

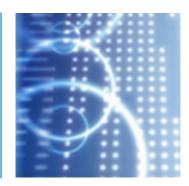
- What technologies are available?
- ▶ To what are they applicable?
 - What are their strengths and weaknesses
 - What are their underlying assumptions about the data, the policies, and the whole process of definition and application of policies?
- Where are they in their evolution from idea to practice?
- How can we frame their utility?
 - Which problems does each one solve?
 - How might they "fit together"?
 - And, what is missing from the larger picture?

Technologies for privacy in Big Data and Communications

- Two broad categories of "data use"
 - Aggregate results
 - Individual insights
 - Lead to significantly different technology opportunities

- Points in data cycle where privacy technologies can be applied
 - Data collection
 - Data access
 - Data processing (incl. fusion) and analytical methods
 - Data compliance and audit
 - Data destruction

Privacy Provision Challenge: consider technologies, their utilities, their scope of applicability and where they are in their evolution from idea to practice



Application of privacy policies at point and time of data collection

- Approaches
 - Online notice and consent
 - Informed consent
 - Setting of personal attributes
 - Human subjects/ethics review boards
 - Inference: application of machine learning to individuals' behaviors

- Challenges
 - Too complex for average user
 - Too disruptive
 - Users feel they have "no choice"
 - Doesn't capture future uses
 - Doesn't clarify who (which stakeholders) have responsibility and opportunity to define policies
 - Doesn't include secondary subjects effectively

Application of particular privacy policy to specific data resource

- Approaches
 - Data use agreements (in some parts of the world, defined by law, in others by policy statement)
 - Examples: data tagging, DRM for personal data
 - Authentication/authorization protocols (both software and hardware): OAuth & access control
 - Encryption (and related key management): Functional encryption

- Challenges
 - Different levels and models for different subjects
 - Key management (including revocation problem)
 - Tagging may be too simplistic
 - Lack of "extensibility"
 - Lack of "evolvability"
 - Functional encryption both restrictive and computational intensive

Data processing and analytical methods

Privacy preserving analysis including anonymization

- Approaches
 - Data access
 - Remove PII and other personally identifying data
 - Statistical anonymization (e.g. kanonymity)
 - Individual queries
 - Personal Data Stores
 - Secure multi-party computation
 - Functional and homomorphic encryption
 - Statistical approaches
 - Differential privacy and algorithms
 - Synthetic data sets

- Challenges (just a few examples)
 - Personal Data Stores: only as trustworthy as the underlying system, no control once data has "left" the store
 - Functional and homomorphic encryption: limited to small set of possible operations, computationally intense
 - Differential privacy
 - Static data
 - Data set must be large enough to "hide" individuals
 - Restriction on queries: cannot ask too many queries
 - Defining and understanding &

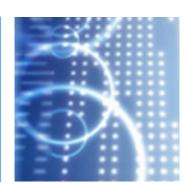
Tracking and enforcing use policies

- Approaches
 - Accountable systems
 - Logging metadata
 - ► Focus on recourse
 - Formalizing legal constraints and enforcement
 - Example: Microsoft on Bing
 - Legalease: formal representation
 - Grok: strong type enforcement

- Challenges
 - Accountable systems
 - Scalability
 - ► Generality vs. specificity
 - Sources of trust
 - Privacy of logging data
 - Microsoft approach
 - Specific to Map/Reduce type interactions
 - Static (compile time)

Eliminating access to data

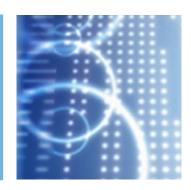
- Approaches (besides just deletion)
 - Elimination: Garfinkel's proposal: on schedule probabilistically lose one bit at a time of encryption key
 - Overload: Forgetting functions
 - Specification of when to forget which data
 - Achieving it through aggregation and/or sampling plus deletion
 - Machine unlearning: retain learning set and summaries, and subtract what is to be forgotten from summaries


- Challenges
 - Figuring out what should be deleted
 - Figuring out when to delete
 - Trusting that the deletion happens

Cross-cutting: metrics for privacy

- Observations
 - Privacy is not binary
 - Privacy is dynamic
 - Privacy is context sensitive (Nissenbaum)
- Metrics
 - K-anonymity
 - L-diversity
 - ε differential privacy
 - Privacy-approximation ratio of function f: quantifying the amount of privacy afforded to participants providing sensitive information to the distributed function f (Feigenbaum)
 - Information theoretic approach to modeling disclosure risk measures (Bezzi)

What's missing? People & policies


- Only at data collection points?
 - Policies for data curation
 - Policies for data management
 - Policies for data fusion
 - Policies for data use: what can be asked and what can be done with the answers
- How to balance
 - Humans' ability to understand and make choices about risks/benefits
 - Legal responsibilities
 - Societal expectations and norms

- Have talked about this in this context before
- Issues
 - Must understand the risks
 - Must understand the cost of those risks
 - Must understand the value of the trust that those risks will not occur
- Who are we trusting to behave in what ways in which contexts, and what is the cost or recourse if they do not?
- Trust frameworks: significant work on trust frameworks for identity management, but limited domain

Challenges to the collection, management and use of large amounts of data

- Notion of privacy evolving over time
 - Not binary
 - May change with time
 - ► Hence notions of "harms", "risks", and "costs" may change
- ► The whole data life-cycle is important
- Trust is critically important, but becomes increasingly complex as data management, fusion and use evolves
- Negative social implications
 - Increased and more subtle opportunities for discrimination
 - Freedom of speech
 - Reduction in possibilities for anonymity (not the same as privacy)

Thank you

- Questions?
- ► Contact me: Karen Sollins
 - ► sollins@csail.mit.edu
 - **+** 1 617 253 6006